Série de révision sur les fonctions

Exercice 1. [Droites]

L'équation de la droite passant par (1,1) et (-3,2) est

$$\Box \ y = \frac{3}{4}x + \frac{1}{4}$$

$$\Box y = \frac{5}{4}x - \frac{1}{4}$$

$$y = -\frac{3}{4}x + \frac{5}{4}$$

$$y = -\frac{1}{4}x + \frac{5}{4}$$

Exercice 2. [Polynômes de degré 2]

Quel polynôme de degré 2 passe par les points (1,0), (3,0) et $(2,\pi)$?

$$p(x) = (x-1)(x-3)$$

$$p(x) = -\pi(x-1)(x-3)$$

$$p(x) = \pi(x-1)(x-3)$$

$$p(x) = -(x-1)(x-3)$$

Exercice 3. [Polynômes d'interpolation]

Quel est le polynôme d'interpolation qui passe par les points (0,0), (1,-1), (2,-2), (3,-3)?

$$\Box p(x) = x$$

$$p(x) = x + 1$$

$$p(x) = -x$$

$$p(x) = -x - 1$$

Exercice 4. [Polynômes de degré supérieur]

Si l'on se donne n points dans le plan, alors le polynôme d'interpolation passant par ces n points

 \square est toujours de degré n-1

 \square est toujours de degré $\geq n$

- \square est toujours de degré $\leq n-1$
- \square est toujours de degré n

Exercice 5. [Binôme de Newton 1]

Dans l'expression de $(2+x)^{90}$ le coefficient se trouvant devant le terme x^{20} vaut

$$\square \binom{90}{20}$$

$$\Box 2^{70}\binom{90}{70}$$

$$\Box 2^{20}\binom{90}{20}$$

$$\Box$$
 $\binom{90}{70}$

Exercice 6. [Binôme de Newton 2]

Dans l'expression de $(2+3x)^{999}$ le coefficient devant le terme x^{998} vaut

 $\Box 1998 \cdot 3^{998}$ $\Box 3^{998}$

 $\square 999 \qquad \qquad \square 2^{998}$

Exercice 7. [Puissances]

L'expression $(a^{b+c})^d$ est égale à

 $\Box \ a^{bd} + a^{cd} \qquad \qquad \Box \ a^{bd+cd}$

 $\Box \ a^{(b+c)^d} \qquad \Box \ (a^d)^{b+c}$

Exercice 8. [Fonction exponentielle]

La valeur d'un terrain augmente chaque année de 10%. Après combien d'années ce terrain vaut-il entre 3 et 4 fois sa valeur initiale?

□ 10 □ 12

□ 11 □ 15

Exercice 9. [Logarithme 1]

Soit n un entier. Alors l'expression ln(n!) est égale à

 $\Box \ln(2) - \ln(3) + \ln(4) - \dots + (-1)^n \ln(n)$ $\Box \ln(2) \ln(3) \dots \ln(n)$

 $\Box \ln(2) + \ln(3) + \dots + \ln(n)$

Exercice 10. [Logarithme 2]

Soit n un nombre entier positif, b > 0, $b \neq 1$, et soit $\log_b : \mathbb{R}_+ \to \mathbb{R}$ la fonction logarithme en base b. Alors l'expression $\log_b((n+1)!) - \log_b(n!)$ vaut

 $\Box \log_b(n+1)$ $\Box \log_b(n-1)$

 $\Box \log_b(n)$ $\Box 0$

Exercice 11. [Logarithme 3]

Soit n un entier. Alors l'expression $\ln(n!)$ est égale à

$$\ln(2) - \ln(3) + \ln(4) - \dots + (-1)^n \ln(n)$$

$$\Box \ln(2)\ln(3)\cdots\ln(n)$$

$$\Box \ln(2) + \ln(3) + \cdots + \ln(n)$$

$$\Box \ln(n)!$$

Exercice 12. [Suites géométriques/arithmétiques]

Une grenouille fait un bond de 1 mètre puis continue de bondir $\frac{1}{3}$ moins loin à chaque bond. Quelle distance a-t-elle parcouru après 12 bonds?

□ 3 mètres

 $\Box \ \ 3 - \frac{2^{12}}{3^{11}} \ \ \text{mètres}$

 \Box 3 - $\frac{2^{13}}{3^{13}}$ mètres

 $\Box \frac{3}{2}(1-(\frac{1}{3})^{13})$ mètres

Exercice 13. [Série géométrique]

La somme infinie $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\sum_{k=1}^{\infty}\frac{1}{2^k}$

 $\Box \frac{3}{2}$

□ 1

 $\Box \frac{5}{2}$

□ 2

Exercice 14. [Triangle équilatéral]

Un triangle équilatéral a une surface égale à 1. Combien vaut son côté?

 $\Box \quad \frac{2}{\sqrt{3}}$

 $\Box \quad \frac{2}{\sqrt[4]{3}}$

 $\Box \frac{1}{3}$

 $\Box \frac{4}{\sqrt{3}}$

Exercice 15. [Identités trigonométriques]

Soit α un angle tel que $\cos(\alpha) = \frac{\sqrt{7}}{4}$. Alors on a

 $\Box \cos(2\alpha) = -\frac{1}{2}$

 $\Box \cos(2\alpha) = -\frac{1}{8}$

 $\Box \cos(2\alpha) = \frac{1}{4}$

 $\Box \cos(2\alpha) = \frac{1}{16}$

Exercice 16. [Fonctions trigonométriques]

L'expression tan(3x) vaut

$$\Box \tan(x)^3$$

$$\Box \tan(x) \frac{3 - \tan(x)}{1 - 3\tan(x)}$$

$$\Box \tan(x) \frac{2\cos^2(x) - \sin^2(x)}{\cos^2(x) - 2\sin^2(x)}$$

$$\Box \tan(x) \frac{3 - \tan^2(x)}{1 - 3\tan^2(x)}$$

Exercice 17. [Identité trigonométrique]

L'expression $\cos(\arcsin(x) - \arccos(x))$ vaut

$$\Box$$
 0

$$\boxtimes 2x\sqrt{1-x^2}$$

$$\Box x\sqrt{1-x^2}$$

$$\Box \sqrt{1-x^2}-x$$

Exercice 18. [Valeurs et logarithmes connues]

L'expression $\arcsin(\log_9 3)$ est égale á

$$\Box$$
 1

$$\Box$$
 1/2

$$\Box \pi/3$$

$$\boxtimes \pi/6$$

Exercice 19. [Identités trigonométriques et valeurs connues] Écrire y(t) comme une seule fonction sinus.

$$y(t) = \frac{\sqrt{3}}{2}\cos(t) + \frac{1}{2}\sin(t).$$

$$\Box \ y(t) = \sin(t - \pi/2)$$

$$\exists y(t) = \sin(t + \pi/3)$$

$$\Box y(t) = \sin(t + \pi/2)$$

$$\exists y(t) = \sin(t - \pi/3)$$

Exercice 20. [Identités trigonométriques]

Étant donné que $\sin \theta = 2u$, et $\pi/2 < \theta < \pi$, trouver $\tan 2\theta$.

$$\Box \tan 2\theta = \frac{2u}{\sqrt{1-4u^2}}$$

$$\Box \tan 2\theta = \frac{4u\sqrt{1-4u^2}}{1-8u^2}$$

$$\Box \tan 2\theta = -\frac{4u\sqrt{1-4u^2}}{1-8u^2}$$

$$\Box \tan 2\theta = -\frac{2u}{\sqrt{1-4u^2}}$$

Exercice 21. [Extrême et moyenne raison]

On partage un carré de côté 1 en deux portions d'aires égales à A et B comme dans la figure ci-contre. Pour quelle valeur de x les grandeurs A et B forment une extrême et moyenne raison?

$$\square \ x = \frac{1+\sqrt{5}}{2}$$

$$x = 3 + \sqrt{5}$$

$$\Box \ x = \frac{\sqrt{5}-1}{2}$$

Exercice 22. [Fonctions trigonométriques inverses]

Soit y un nombre. Pour quelle valeur de x a-t-on arccos(x) = 2y?

$$\Box x = \cos(\frac{y}{2})$$

Exercice 23. [Fonctions hyperboliques]

L'expression sinh(4x) vaut

$$\Box 4 \cosh(x) \sinh(x)$$

$$\Box 4\cosh(x)\sinh(x)(1+2\sinh^2(x))$$

$$\Box 2 \cosh(x) \sinh(x)$$

$$\Box 4\cosh(x)\sinh(x)(1-2\sinh^2(x))$$